Document pour le professeur

Version septembre 2016

Utilisation du logiciel **MBLOCK**

pour piloter une carte Arduino Uno

et de l'application **App Inventor** pour communiquer avec un shield Bluetooth

Utilisation du shield Bluetooth

<u>ATTENTION :</u> il existe plusieurs sortes de shields Bluetooth.

L'extension proposée est conçue pour ce shield uniquement.

Configuration de la carte

Placer le cavalier RX sur l'entrée numérique 4 et le cavalier TX sur l'entrée numérique 2

Les broches 2 et 4 ont été choisies car elles ne sont pas des sorties PWM

Placer le shield ci-desous sur le shield Bluetooth et le shield Bluetooth sur l'Arduino Uno

Tableau des entrées - sorties

Broche	Entrée/Sortie	Analog/Numér	Valeurs	Com	posant
AO	Entrée	Analogique	0 à 1023 (2 ¹⁰)	Bouton poussoir	To a
A1	Entrée	Analogique	0 à 1023		
A2	Entrée	Analogique	0 à 1023		
A3	Entrée	Analogique	0 à 1023		
A4	Entrée	Analogique	0 à 1023		
D0	RX Arduino				
D1	TX Arduino				
D2					TX shield Bluetooth
D3	Entrée/Sortie	Numérique pwm	haut/bas ou 0 à 255 (2 ⁸)	DEL verte	
D4					RX shield Bluetooth
D5	Entrée/Sortie	Numérique pwm	haut/bas ou 0 à 255 (2 ⁸)	DEL jaune	
D6	Entrée/Sortie	Numérique pwm	haut/bas ou 0 à 255 (2 ⁸)	DEL rouge	-
D7	Entrée/Sortie	Numérique			
D8	Entrée/Sortie	Numérique			
D9	Entrée/Sortie	Numérique pwm	haut/bas ou 0 à 255 (2 ⁸)	DEL RGB (RVB) - rouge	A Contraction
D10	Entrée/Sortie	Numérique pwm	haut/bas ou 0 à 255 (2 ⁸)	DEL RGB (RVB) - vert	
D11	Entrée/Sortie	Numérique pwm	haut/bas ou 0 à 255 (2 ⁸)	DEL RGB (RVB) - bleu	111
D12	Entrée/Sortie	Numérique			
D13	Entrée/Sortie	Numérique			

<pre>paulcoiffier / bluetooth_extension</pre>							★ Star	0	¥ Fork	0
<> Code	() Issues 0	n Pull requests 0	4~ Pulse	III Graphs						

Extension bluetooth Arduino pour MBlock

P 4 commits	ဖို 1 branch	🛇 0 releases	🤽 0 contributors
Branch: master - New pull request			Find file Clone or download -
Paul MAJ archive			Latest commit a42b988 7 days ago
in dist	MAJ archive		7 days ago
in js	import des sources		7 days ago
🖿 src	import des sources		7 days ago
README.md	modification description		7 days ago
bluetooth.s2e	import des sources		7 days ago

README.md

Extension MBlock bluetooth

Extension pour la configuration et l'utilisation d'un module Bluetooth Arduino

Installation

Téléchargez l'extension en cliquant ICI Pour l'installer, ouvrez le gestionnaire d'extensions MBlock (choisir "zip file" en tant que type de fichier à ouvrir) puis sélectionnez le fichier téléchargé.

Utilisation

Pour utiliser l'extension, glissez le bloc "Bluetooth init" dans votre cinématique et renseignez-y les paramètres :

- TX : Permet de définir TX
- RX : Permet de définir RX
- Nom : Nom du module Bluetooth
- Code Pin : Code pour appairer le module.

Cliquer sur ICI Téléchargez l'extension en cliquant ICI

Voulez-vous ouvrir ou enregistrer Bluetooth	extension.zip (4,26 Ko) à partir de raw.	.githubusercontent.com?	Ouvrir	Enregistrer	▼ Annuler	×
Cliquer sur Enregistrer sous	Ouvrir Enregistrer 🔻	Enregistrer Enregistrer sous Enregistrer et ouvrir		Stéphane	COIFFIER - P	age 4

Sélectionner le dossier dans lequel le fichier sera enregistré

Laisser le fichier Bluetooth extension au format .zip

Dans mBlock, cliquer sur Choix des extensions puis Gérer les extensions

Cliquer sur Ajouter puis sélectionner le fichier Bluetooth extension.zip

Sélectionner le format zip file (*.zip)

zip file (*.zip)	~
json file (*.json)	
zip file (*.zip)	N
	12

Contrôleur LCD Controleur moteur

Communication

Arduino

Contrôleur Bluetooth

<

~

<

~

Cliquer sur **Choix des extensions** puis **Gérer les extensions** Sélectionner **Contrôleur Bluetooth**

Ce menu apparaît dans le script Pilotage

Contrôleur Bluetooth 🔻 — 🔴									
Bluetooth init : TX : 7 RX : 6 Nom :	E	BTSIa	ve	Co	de	Pin	:	1234	4
une donnée est disponible ?									
lire la ligne									

Exercice 1 Un bouton pour allumer et un bouton pour éteindre la LED verte

1 - Travail dans mBlock

<u>Travail à effectuer :</u> répéter indéfiniment, si une donnée est disponible, lire la ligne reçue. Si le signal reçu est égal à 1 alors allumer la DEL verte (broche 3). Si le signal reçu est égal à 2 alors éteindre la DEL verte (broche 3).

Commencer par mettre **TX à 2, RX à 4**, Nom **BTSlave** (par défaut) ou un autre nom et Code PIN **1234** (par défaut) ou un autre nombre

Si une donnée est disponible, alors

Si le signal reçu est égal à 1 alors allumer la DEL verte (broche 3)

Si le signal reçu est égal à 2 alors éteindre la DEL verte (broche 3)

Arduino - générer le code	
Bluetooth init : TX : 2 RX : 4 Nom : BTSlave Code Pin :	1234
répéter indéfiniment	
si une donnée est disponible ? alors	
si (lire la ligne) = 1) alors	
mettre l'état logique de la broche 3 à haut	
si (lire la ligne) = 2) alors	
mettre l'état logique de la broche 3 à bas	

Sauvegarder le fichier, par exemple Bluetooth LED verte.sb2

Téléverser le programme dans l'Arduino Uno

2 - Travail dans l'application App Inventor

<u>Travail à effectuer :</u> envoyer le code « 1 » si le bouton **Allumer LED verte** est sélectionné et envoyer le code « 2 » si le bouton **Eteindre LED verte** est sélectionné.

Cliquer sur Projets

Cliquer sur Importer le projet (.aia) de mon ordinateur ...

Sélectionner ARDUINO_LIAISON_BLUETOOTH.aia

Interface utilisateur sur le Smartphone ou la tablette

Le bouton **Connexion** permet d'établir la connexion entre le Smartphone ou la tablette et le module Bluetooth.

Le bouton **Déconnexion**, caché derrière le bouton **Connexion** permet d'arrêter la connexion entre le Smartphone ou la tablette et le module Bluetooth. Pour le faire apparaître, cocher « **Afficher les composants cachés dans l'interface** »

	9:4 📓 🖍 🦃
Liaison_Bluetooth	
	Déconnexion Conn

Le bouton **Allumer LED verte** permettra de mettre la broche 3 de l'Arduino à l'état **haut** et d'allumer la LED verte par l'envoi du code « 1 » vers le module Bluetooth.

Le bouton **Eteindre LED verte** permettra de mettre la broche 3 de l'Arduino à l'état **bas** et d'éteindre la LED verte par l'envoi du code « 2 » vers le module Bluetooth.

Allumage de la LED verte

Lorsque vous cliquez sur le bouton nommé **Allumer LED verte**, la valeur « **1** » est envoyée par liaison Bluetooth

Extinction de la LED verte

Lorsque vous cliquez sur le bouton nommé Eteindre LED verte, la valeur « 2 » est envoyée par liaison Bluetooth

Gestion de la communication en Bluetooth

Ces blocs sont nécessaires pour gérer la communication en Bluetooth

quand Screen1 .Initialise <
quand Deconnexion .Clic fa 🔶
quand info .Après choix
quand Connexion .Après pri
quand Connexion .Avant pri

On peut déployer la visualisation de ces blocs en effectuant un clic droit sur le bloc souhaité et en sélectionnant « **Développer le bloc** ».

Transfert de l'application vers la tablette

Cliquer sur Construire

Cliquer sur App (enregistrer .apk sur mon ordinateur) pour sauvegarder l'application

La barre suivante apparaît

ARDUINO_LIAISON_BLUETOOTH Progress Bar						
	<mark>50</mark> %					
Compiling part 2 (please wait)						

Puis la fenêtre

Ouverture de ARDUINO_LIAISON_BLUETOOTH.apk						
Vous avez choisi d'ouvrir :						
ARDUINO_LIAISON_BLUETOOTH.apk						
qui est un fichier de type : apk File (1,5 Mo)						
à partir de : http://ai2.appinventor.mit.edu						
Que doit faire Firefox avec ce fichier ?						
O <u>O</u> uvrir avec <u>P</u> arcourir						
Enregistrer le fichier						
<u> </u>						
OK Annuler						

Cliquer sur **OK**

Le fichier ARDUINO_LIAISON_BLUETOOTH.apk est sauvegardé dans le répertoire Téléchargements

Brancher la tablette sur l'ordinateur, à l'aide du cordon Copier, à l'aide de l'explorateur Windows, le fichier ARDUINO_LIAISON_BLUETOOTH.apk sur la tablette (de préférence dans le répertoire Document) Installer l'application Débrancher la tablette

Lancer l'application ARDUINO_LIAISON_BLUETOOTH sur la tablette

Appairer la tablette et le module Bluetooth en tapant le code Pin choisi dans le fichier mBlock (**1234** par défaut)

Faire fonctionner l'application

Exercice 2

Un seul bouton visible pour allumer et éteindre la LED verte

1 - Travail dans mBlock (identique à l'exercice 1)

<u>Travail à effectuer</u> : répéter indéfiniment, si une donnée est disponible, lire la ligne reçue. Si le signal reçu est égal à 1 alors allumer la DEL verte (broche 3). Si le signal reçu est égal à 2 alors éteindre la DEL verte (broche 3).

Plus rapide, ouvrir le fichier Bluetooth LED verte.sb2

Téléverser le programme dans l'Arduino Uno

2 - Travail dans l'application App Inventor

Travail à effectuer :

- Le bouton Allumer LED verte permettra de mettre la broche 3 à l'état haut et d'allumer la LED verte par l'envoi du code « 1 » vers le module Bluetooth. Le bouton prendra alors le nom Eteindre LED verte.
- Le bouton **Eteindre LED verte** permettra de mettre la broche 3 à l'état **bas** et d'éteindre la LED verte par l'envoi du code « **2** » vers le module Bluetooth. Le bouton prendra alors le nom **Allumer LED verte**.
- Ajouter l'image **led verte.png**.

Projets •

Ajouter l'icône de l'application led verte.png.

Cliquer sur

Cliquer sur Importer le projet (.aia) de mon ordinateur ...

Sélectionner ARDUINO_LIAISON_BLUETOOTH_2.aia

Interface utilisateur sur le Smartphone ou la tablette

Cocher « Afficher les composants cachés dans l'interface » pour le

Les boutons Connexion, Déconnexion, Allumer LED verte, Eteindre LED verte sont déjà présents.

Ajouter l'image led verte.png

	Connexion
Allumer LED verte	

Ajouter l'icône de l'application led verte.png

Allumage de la LED verte

Lorsque vous cliquez sur le bouton nommé LED_VERTE :

- Le bouton prendra alors le nom Eteindre LED verte
- La valeur « 1 » est envoyée par liaison Bluetooth

Extinction de la LED verte

Lorsque vous ne cliquez pas sur le bouton nommé LED_VERTE :

- Le bouton prendra alors le nom Allumer LED verte
- La valeur « 2 » est envoyée par liaison Bluetooth

Résultat :

Gestion de la communication en Bluetooth

Ces blocs sont nécessaires pour gérer la communication en Bluetooth

On peut déployer la visualisation de ces blocs en effectuant un clic droit sur le bloc souhaité et en sélectionnant « **Développer le bloc** ».

Transfert de l'application vers la tablette Identique que sur la page 10

Lancer l'application ARDUINO_LIAISON_BLUETOOTH_2 sur la tablette

Appairer la tablette et le module Bluetooth en tapant le code Pin choisi dans le fichier mBlock (**1234** par défaut)

Faire fonctionner l'application

Exercice 3

Un seul bouton visible pour allumer et éteindre la LED verte Un seul bouton visible pour allumer et éteindre la LED jaune Un seul bouton visible pour allumer et éteindre la LED rouge

1 - Travail dans mBlock

<u>Travail à effectuer :</u> répéter indéfiniment, si une donnée est disponible, lire la ligne reçue.

Si le signal reçu est égal à 1 alors allumer la DEL verte (broche 3). Si le signal reçu est égal à 2 alors éteindre la DEL verte (broche 3). Si le signal reçu est égal à 3 alors allumer la DEL jaune (broche 5). Si le signal reçu est égal à 4 alors éteindre la DEL jaune (broche 5). Si le signal reçu est égal à 5 alors allumer la DEL rouge (broche 6). Si le signal reçu est égal à 6 alors éteindre la DEL rouge (broche 6).

2 - Travail dans l'application App Inventor

Travail à effectuer :

Envoyer le code « 1 » si le bouton **Allumer LED verte** est sélectionné Envoyer le code « 2 » si le bouton **Eteindre LED verte** est sélectionné. Envoyer le code « 3 » si le bouton **Allumer LED jaune** est sélectionné Envoyer le code « 4 » si le bouton **Eteindre LED jaune** est sélectionné. Envoyer le code « 5 » si le bouton **Allumer LED rouge** est sélectionné Envoyer le code « 6 » si le bouton **Eteindre LED rouge** est sélectionné. DEL RGB
Connexion
Allumer LED verte
Allumer LED jaune
Allumer LED rouge

Transfert de l'application vers la tablette Identique que sur la page 10

Lancer l'application ARDUINO_LIAISON_BLUETOOTH_3 sur la tablette

Appairer la tablette et le module Bluetooth en tapant le code Pin choisi dans le fichier mBlock (**1234** par défaut)

Faire fonctionner l'application